ГлавнаяКарта сайтаНапишите намПоиск по сайту
EDS-Soft
ElectroDynamic Systems Software ScientificTM
Radiolocation Systems ResearchTM



Antenna Array


Коэффициент усиления антенны (КУ)

Под коэффициентом усиления передающей антенны понимают отношение плотности потока мощности, создаваемого данной антенной на некотором …

(из «Словаря терминов» нашего сайта)






Владимир Сергеевич Филиппов, профессор кафедры радиофизики, антенн и микроволновой техники МАИ (г. Москва), доктор технических наук.


Алексей Андреевич Сапожников, доцент кафедры радиофизики, антенн и микроволновой техники МАИ (г. Москва), кандидат технических наук.
Является одним из основателей и руководителей компании «Автономные энергосистемы».
1/ 23все страницы

Метод заряда в задаче математического моделирования печатных излучателей



Опубликовано: 18.08.2010
Оригинал: Автоматизированное проектирование устройств и систем СВЧ //Сб. научных трудов (межвузовский). (Москва, МИРЭА), 1982, с.138…148
© В. С. Филиппов, А. А. Сапожников, 1982. Все права защищены.
© EDS–Soft, 2010. Все права защищены.


Рассматриваемый в настоящей работе метод исследования электродинамических характеристик излучающего полотна ФАР применим к антеннам с печатными излучателями прямоугольной формы, а также для других излучателей, которые можно представить в виде набора элементов прямоугольной формы. Однако, в качестве конкретного примера метод заряда применен к исследованию печатного вибраторного излучателя (рис.1) в составе антенной решетки.

Как известно [1], некоторая свобода выбора интегрального представления электромагнитных полей в задачах дифракции позволяет получать различные интегральные уравнения. Существо предлагаемого метода заключается в определении промежуточной характеристики — распределения заряда на металлической пластине, а затем путем интегрирования — электрического тока. Векторы электромагнитного поля определяются через векторный потенциал электрических токов при помощи известных уравнений:

(1)

где .

Излучатель рассматривается в составе бесконечной периодической антенной решетки, что позволяет перейти к анализу поля в пределах одного ее периода. В связи с этим для векторного потенциала целесообразно использовать представление в виде разложения по плоским волнам [2]:

(2)

где

и — вектор объемной плотности электрического тока, (x,y,z), (x',y',z') — координаты точки наблюдения и точки интегрирования соответственно.


Рис.1

Предполагая металлические излучатели идеально проводящими и бесконечно тонкими, вектор объемной плотности электрического тока можно записать следующим образом:

(3)

а действие экрана целесообразно заменить зеркальным изображением излучателя:

(4)

где — вектор поверхностной плотности электрического тока, — дельта функция Дирака.

Производя интегрирование в выражении (2) по продольной координате z с учетом (3) и (4), можно получить значения гармоники векторного потенциала в двух характерных областях структуры:

(5)

Волна потенциала представляется в виде суперпозиции волн, связанных с Е- и Н-волнами пространственного волновода:

(6)

Указанные волны определяются следующими выражениями:

(7)

где .


1/ 23все страницы

Использованная литература

1. Васильев Е.Н. Алгоритмизация задач дифракции на основе интегральных уравнений. - В сб. "Прикладная электродинамика", М.: Высшая школа, 1977, №1.
2. Марков Г.Т. Антенны. – М-Л.: Госэнергоиздат, 1960.
3. Ильинский А.С., Свешников А.Г. Численные методы в теории дифракции. М.: МГУ, 1975.
4. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. – М.: Наука, 1979.

Статьи за 2010 год

Все статьи

RefereesHelp Race 1.5.7

RefereesHelp Race™ является профессиональным решением по учету данных о проведении соревнований по бегу, плаванию или лыжным гонкам.


Подписка



Изменение параметров подписки


 




 
 
EDS-Soft

© 2002-2025 | EDS-Soft
Контакты | Правовая информация | Поиск | Карта сайта

© дизайн сайта | Андрей Азаров