ГлавнаяКарта сайтаНапишите намПоиск по сайту
EDS-Soft
ElectroDynamic Systems Software ScientificTM
Radiolocation Systems ResearchTM



Antenna Array


Зеркальная антенна

Апертурные антенны, в которых используется явление направленного отражения радиоволн от металлического зеркала (рефлектора) для преобразования слабонаправленных …

(из «Словаря терминов» нашего сайта)






Владимир Сергеевич Филиппов, профессор кафедры радиофизики, антенн и микроволновой техники МАИ (г. Москва), доктор технических наук.


Алексей Андреевич Сапожников, доцент кафедры радиофизики, антенн и микроволновой техники МАИ (г. Москва), кандидат технических наук.
Является одним из основателей и руководителей компании «Автономные энергосистемы».
1/ 2/ 3все страницы

Метод заряда в задаче математического моделирования печатных излучателей



Опубликовано: 18.08.2010
Оригинал: Автоматизированное проектирование устройств и систем СВЧ //Сб. научных трудов (межвузовский). (Москва, МИРЭА), 1982, с.138…148
© В. С. Филиппов, А. А. Сапожников, 1982. Все права защищены.
© EDS–Soft, 2010. Все права защищены.


Приведенные выше соотношения получены для случая однородного пространства над решеткой (z>0). Учитывая теперь влияние неоднородностей в виде границ между диэлектрическими слоями, для области z0<z<z1, где z0 и z1 — расстояния от экрана до металлической пластины и верхнего диэлектрического слоя соответственно, выражение (6) можно видоизменить следующим образом:

(8)

В полученном соотношении величины:

(9)

являются функциями коэффициентов отражения Е- и Н-волн от границы раздела сред z=z1. Коэффициенты отражения могут быть получены из системы уравнений, соответствующей граничным условиям на границах раздела сред:

(10)

где

а , — проводимости (m,n)-ой гармоники E- и Н-волны соответственно.

Компоненты векторных величин в (8) можно получить подставляя (5) в (7):

(11)

где

(12)

а знак обозначает X или Y координату.

Производя интегрирование по частям в последнем выражении с учетом граничных условий для нормальных составляющих тока на кромках излучателя и уравнения непрерывности:

(13)

получим

(14)

где — составляющие поверхностной плотности электрического заряда, связанные о соответствующими компонентами плотности тока.

Таким образом, вектора поля (1), выраженные через электродинамические потенциалы, полностью определяются неизвестным пока распределением электрического заряда по поверхности излучателя. Искомый заряд можно найти методом интегрального уравнения. Для этого используем граничное условие для полного электрического поля на поверхности идеально проводящего излучателя:

(15)

где

— стороннее электрическое поле, a E0 — известное значение напряженности электрического поля в зазоре между плечами вибратора. Интегрируя первое уравнение из (1) по поперечным координатам, можно получить:

(16)

где С — постоянная интегрирования.

При использовании в (16) найденных выше выражений для электрических потенциалов можно получить систему из двух интегральных уравнений первого рода:

(17)

Наличие двух составляющих заряда требует, вообще говоря, решения системы уравнений (17). В частном случае, когда излучателями являются узкие вибраторы с одной ненулевой составляющей тока, поперечное распределение которой известно, система уравнений (17) сводится к одномерному интегральному уравнению:

(18)

где

(19)
(20)

(21)

Ядро (19) интегрального уравнение (18) представлено в виде суммы двух слагаемых (20). Слагаемое при совпадении аргументов имеет интегрируемую особенность, выделяя которую [3], можно привести интегральное уравнение первого рода (18) к уравнению второго рода:

(22)

где

численное решение которого является корректной задачей [4]. В последнем выражении слагаемое ядра:

(23)

является гладкой функцией координат. Здесь R — радиус окружности с центром в особой точке x=x', а

Коэффициенты разложения выделенной особенности вида в ряд по ортогональным функциям могут быть найдены в виде:

(24)

где , , — функции Бесселя нулевого и первого порядка, , — функции Струве нулевого и первого порядка соответственно.

Функция в выражении (22) представляет собой результат выделения особенности:

(25)

1/ 2/ 3все страницы

Использованная литература

1. Васильев Е.Н. Алгоритмизация задач дифракции на основе интегральных уравнений. - В сб. "Прикладная электродинамика", М.: Высшая школа, 1977, №1.
2. Марков Г.Т. Антенны. – М-Л.: Госэнергоиздат, 1960.
3. Ильинский А.С., Свешников А.Г. Численные методы в теории дифракции. М.: МГУ, 1975.
4. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. – М.: Наука, 1979.

Статьи за 2010 год

Все статьи

GuidesArray Coaxial 0.1.2

GuidesArray Coaxial™ используется инженерами для проектирования и исследования характеристик плоских периодических фазированных антенных решеток коаксиальных волноводов.


Подписка



Изменение параметров подписки


 




 
 
EDS-Soft

© 2002-2025 | EDS-Soft
Контакты | Правовая информация | Поиск | Карта сайта

© дизайн сайта | Андрей Азаров