12/ 3/ все страницы

Метод заряда в задаче математического моделирования печатных излучателей



Опубликовано: 18.08.2010
Оригинал: Автоматизированное проектирование устройств и систем СВЧ //Сб. научных трудов (межвузовский). (Москва, МИРЭА), 1982, с.138…148
© 1982, В. С. Филиппов, А. А. Сапожников
© 2010, EDS–Soft,  http://www.eldys.org,   E-mail: publications@eldys.org


Таким образом, получено интегральное уравнение (22), алгоритмы численного решения которого хорошо известны. В данной задаче удобно использовать интерполяционный метод Крылова-Боголюбова, согласно которому интегральное уравнение сводится к системе линейных алгебраических уравнений при кусочно-постоянной аппроксимация неизвестной функции. Для этого вибратор делится на N конечных элементов, которые в силу оговоренной выше малой ширины вибратора располагаются только вдоль оси X. Считая неизвестную функцию постоянной в пределах каждого конечного элемента и согласовывая решение в их средних точках, можно перейти к системе уравнений:

(26)

где

Решая полученную систему уравнений, можно найти распределение электрического заряда по металлическому вибратору, через которое находятся все интегральные характеристики излучателя в решетке: парциальная диаграмма направленности, входное сопротивление и другие. При не очень малых размерах конечных элементов матрица системы будет хорошо обусловленной, так как выделение особенности ядра интегрального уравнения приводит к доминированию по абсолютной величине диагональных элементов над остальными элементами матрицы системы.

Необходимо отметить, что в данном методе характеристики излучателя определяются через распределение заряда на поверхности вибратора, а не тока, как это делается во многих родственных задачах. Основное достоинство метода заключается в более быстрой сходимости исследуемых характеристик излучателей при заданной точности расчета. Это связано о тем, что выбранный аппроксимирующий полином для описания распределения заряда эквивалентен полиному для тока, степень которого на единицу больше. Известно, что интегральные характеристики излучателей обладают лучшей сходимостью по сравнению с распределением тока при численном решении граничных задач. В данном случае само распределение тока является интегральной характеристикой распределения заряда, что и определяет преимущества метода.

Разработанная методология анализа антенных решеток с печатными излучателями явилась основой для создания программы расчета характеристик вибраторной ФАР в печатном исполнении. На рис.2 приведены результаты численного решения тестовой задачи определения электрического заряда на вибраторе излучателя решетки с параметрами: dx= 0,6, dy= 0,25, a= 0,5, b= 0,03, c= 0,01, z0= 0,15, ε1= 4, ε2=ε3= 1, φ= 900, θ= 50.


Рис.2


12/ 3/ все страницы

Использованная литература

1. Васильев Е.Н. Алгоритмизация задач дифракции на основе интегральных уравнений. - В сб. "Прикладная электродинамика", М.: Высшая школа, 1977, №1.
2. Марков Г.Т. Антенны. – М-Л.: Госэнергоиздат, 1960.
3. Ильинский А.С., Свешников А.Г. Численные методы в теории дифракции. М.: МГУ, 1975.
4. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. – М.: Наука, 1979.