ГлавнаяКарта сайтаНапишите намПоиск по сайту
EDS-Soft
ElectroDynamic Systems Software ScientificTM
Radiolocation Systems ResearchTM



Antenna Array


Когерентность

Состояние двух или нескольких колебаний, при котором сохраняется постоянное соотношение фаз между этими колебаниями.

(из «Словаря терминов» нашего сайта)






Владимир Сергеевич Филиппов, профессор кафедры радиофизики, антенн и микроволновой техники МАИ (г. Москва), доктор технических наук.


Алексей Андреевич Сапожников, доцент кафедры радиофизики, антенн и микроволновой техники МАИ (г. Москва), кандидат технических наук.
Является одним из основателей и руководителей компании «Автономные энергосистемы».
1/ 23все страницы

Метод заряда в задаче математического моделирования печатных излучателей



Опубликовано: 18.08.2010
Оригинал: Автоматизированное проектирование устройств и систем СВЧ //Сб. научных трудов (межвузовский). (Москва, МИРЭА), 1982, с.138…148
© В. С. Филиппов, А. А. Сапожников, 1982. Все права защищены.
© EDS–Soft, 2010. Все права защищены.


Рассматриваемый в настоящей работе метод исследования электродинамических характеристик излучающего полотна ФАР применим к антеннам с печатными излучателями прямоугольной формы, а также для других излучателей, которые можно представить в виде набора элементов прямоугольной формы. Однако, в качестве конкретного примера метод заряда применен к исследованию печатного вибраторного излучателя (рис.1) в составе антенной решетки.

Как известно [1], некоторая свобода выбора интегрального представления электромагнитных полей в задачах дифракции позволяет получать различные интегральные уравнения. Существо предлагаемого метода заключается в определении промежуточной характеристики — распределения заряда на металлической пластине, а затем путем интегрирования — электрического тока. Векторы электромагнитного поля определяются через векторный потенциал электрических токов при помощи известных уравнений:

(1)

где .

Излучатель рассматривается в составе бесконечной периодической антенной решетки, что позволяет перейти к анализу поля в пределах одного ее периода. В связи с этим для векторного потенциала целесообразно использовать представление в виде разложения по плоским волнам [2]:

(2)

где

и — вектор объемной плотности электрического тока, (x,y,z), (x',y',z') — координаты точки наблюдения и точки интегрирования соответственно.


Рис.1

Предполагая металлические излучатели идеально проводящими и бесконечно тонкими, вектор объемной плотности электрического тока можно записать следующим образом:

(3)

а действие экрана целесообразно заменить зеркальным изображением излучателя:

(4)

где — вектор поверхностной плотности электрического тока, — дельта функция Дирака.

Производя интегрирование в выражении (2) по продольной координате z с учетом (3) и (4), можно получить значения гармоники векторного потенциала в двух характерных областях структуры:

(5)

Волна потенциала представляется в виде суперпозиции волн, связанных с Е- и Н-волнами пространственного волновода:

(6)

Указанные волны определяются следующими выражениями:

(7)

где .


1/ 23все страницы

Использованная литература

1. Васильев Е.Н. Алгоритмизация задач дифракции на основе интегральных уравнений. - В сб. "Прикладная электродинамика", М.: Высшая школа, 1977, №1.
2. Марков Г.Т. Антенны. – М-Л.: Госэнергоиздат, 1960.
3. Ильинский А.С., Свешников А.Г. Численные методы в теории дифракции. М.: МГУ, 1975.
4. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. – М.: Наука, 1979.

Статьи за 2010 год

Все статьи

GuidesArray Circular 0.1.4

GuidesArray Circular™ осуществляет электродинамическое моделирование плоских фазированных антенных решеток круглых волноводов с помощью метода моментов.


Подписка



Изменение параметров подписки


 




 
 
EDS-Soft

© 2002-2025 | EDS-Soft
Контакты | Правовая информация | Поиск | Карта сайта

© дизайн сайта | Андрей Азаров