ГлавнаяКарта сайтаНапишите намПоиск по сайту
EDS-Soft
ElectroDynamic Systems Software ScientificTM
Radiolocation Systems ResearchTM



Antenna Array


Дифракция

Явление отклонения распространения волны от законов геометрической оптики.

(из «Словаря терминов» нашего сайта)






Владимир Сергеевич Филиппов, профессор кафедры радиофизики, антенн и микроволновой техники МАИ (г. Москва), доктор технических наук.


Игорь Владимирович Сутягин, доцент кафедры радиофизики, антенн и микроволновой техники МАИ (г. Москва), кандидат технических наук.
1/ 2/ 34все страницы

Сверхширокополосная ленточная антенная решетка с широкоугольным сканированием



Опубликовано: 17.11.2007
Оригинал: Радиотехника (Москва), 1995, №7...8, с.49...53
© В. С. Филиппов, И. В. Сутягин, 1995. Все права защищены.
© EDS–Soft, 2007. Все права защищены.


Далее опишем способ представления электрических токов на лентах АР. В качестве базисных функций были использованы экспоненциально изменяющиеся вдоль лент и имеющие особенности на краях ленты функции. Параметры экспоненты, описывающей изменение тока вдоль ленты, соответствуют параметрам возбуждения. Особенность тока на краях ленты имеет степень . Запишем выражения для базисных функций тока:

— для лент, параллельных оси X:

(4)

— для лент, параллельных оси Y:

(5)

Решение задачи дифракции в нашей постановке состоит в определении амплитуд базисных функций тока и, затем, в определении рассеянного поля. Для определения амплитуд базисных функций тока воспользуемся уравнением баланса мощности, которое в нашем случае можно записать следующим образом:

(6)

где , S — поверхность, охватывающая элементы с неизвестными токами; Pr — мощность на входе приемных модулей. Используя «приближение тонкой пластины» [1], преобразуем (6) к следующему виду

(7)

Для определения воспользуемся представлением тензорной функции Грина пространственного волновода с плоскослоистым диэлектрическим заполнением. Выполняя интегрирование (7), получаем квадратичную форму, от которой затем переходим к системе линейных алгебраических уравнений относительно амплитуд базисных функций токов

(8)

где Zij — взаимное сопротивление базисных функций с номерами i и j.

Будем про базисную функцию тока, параллельного оси X, говорить, что она «принадлежит классу Х», а про базисную функцию тока, параллельного оси Y, что она «принадлежит классу Y». Для взаимных сопротивлений Zij справедливы следующие выражения:

(9а)

(9б)

(9в)

(9г)

где


1/ 2/ 34все страницы

Использованная литература

1. Филиппов B.C. // Антенны // Под ред. Воскресенского Д.И.— М.: Радио и связь, 1985. вып.32, с.17.

Статьи за 2007 год

Все статьи

GuidesArray Circular 0.1.4

GuidesArray Circular™ осуществляет электродинамическое моделирование плоских фазированных антенных решеток круглых волноводов с помощью метода моментов.


Подписка



Изменение параметров подписки


 




 
 
EDS-Soft

© 2002-2025 | EDS-Soft
Контакты | Правовая информация | Поиск | Карта сайта

© дизайн сайта | Андрей Азаров