ГлавнаяКарта сайтаНапишите намПоиск по сайту
EDS-Soft
ElectroDynamic Systems Software ScientificTM
Antenna Systems ResearchTM



Antenna Array


Когерентность

Состояние двух или нескольких колебаний, при котором сохраняется постоянное соотношение фаз между этими колебаниями.

(из «Словаря терминов» нашего сайта)






Виктор Иванович Чулков, ведущий научный сотрудник Калужского НИИ.
Является автором и руководителем проекта “EDS–Soft” (с 2002 года).
1/ 2все страницы

Теоретическое исследование свойств широкополосной антенной решетки на выпуклой гладкой импедансной поверхности



Опубликовано: 04.03.2005
© В. И. Чулков, 1991. Все права защищены.
© EDS–Soft, 2005. Все права защищены.


При размещении антенных систем на объектах, имеющих искривленную поверхность, возникает необходимость в определении характеристик излучателей конформных антенных решеток (КАР), как наиболее часто используемых составных элементов этих систем. Широкополосность и широкоугольность работы может быть достигнута путем размещения многоэлементной решетки малогабаритных диапазонных ленточных излучателей (МДЛИ) над импедансной структурой (ИС) со специальными свойствами [1], причем использование такой импедансной структуры позволяет повысить сопротивление излучения, что облегчает согласование излучателя с фидерной линией. В связи с известными трудностями, возникающими при экспериментальных исследованиях, актуальным является теоретический анализ свойств КАР МДЛИ над имедансной криволинейной поверхностью (ИКП).

Рассмотрим гладкую выпуклую поверхность без изломов, представляющую собой в общем случае ИС, над которой размещена решетка из МДЛИ. Считаем, что все электродинамические неоднородности (излучатели, плоскопараллельные слои магнитодиэлектриков и т.д.) находятся между поверхностями и , где поверхность расположена на некотором расстоянии над , а все вводимые ниже координатные системы имеют общее начало, лежащее на поверхности . Пусть на АР вдоль отрицательного направления оси декартовой системы координат под углами , падает монохроматическая первичная плоская электромагнитная волна. В результате дифракции этой волны на поверхности КАР наводятся электрические и магнитные токи, являющиеся источниками вторичной электромагнитной волны (рассеянного поля , ). В работе [2] методом Фока−Филиппова [3] построено асимптотическое решение задачи для двумерно-периодической КАР из МДЛИ над медленно-меняющейся цилиндрической ИКП произвольной формы больших электрических размеров. В настоящей работе полученные в [3] результаты обобщаются на выпуклые поверхности двойной кривизны. Сюда мы будем относить как замкнутые поверхности (действительный эллипсоид), так и незамкнутые неограниченные (эллиптический параболоид).

На поверхности полное электромагнитное поле можно записать в виде непрерывного разложения по плоским волнам [4]:

(1)

где , , — ковариантный базис некоторой ортогональной криволинейной системы координат , , , метрический тензор которой:

Векторы
(2)

будем называть «парциальными» векторными гармониками в системе координат на поверхности . Для определения их конкретного вида введем на поверхности полугеодезическую (полярную [5]) систему координат , таким образом, чтобы выполнялись дифференциальные соотношения:

(3)

Здесь — некоторая произвольная функция, не обращающаяся нигде в ноль и обеспечивающая выполнение условий интегрируемости, . Касательные к осям ковариантные векторы удовлетворяют соотношению [10]:

(4)

где — поверхностный градиент [6], — контравариантный базис системы координат , , , а является эйконалом «парциальной» гармоники падающей волны на поверхности . В выражении (4) , k=1,2 — компоненты ковариантного метрического тензора (=1, =0, ) [7]:

Обозначим через , радиусы кривизны поверхности вдоль координатных линий и (=0). Будем считать, что физические компоненты электромагнитных полей (падающего и рассеянного) удовлетворяют условию малости поперечной и пренебрежимой малости продольной диффузий [8]. Тогда уравнения Максвелла могут быть асимптотически (при , m=1,2) сведены к системе связанных параболических уравнений Леонтовича−Фока относительно ковариантных компонент электрического поля и в координатах , , [3]. Решение последней в однородной области пространства вблизи решетки (при ) позволяет найти все остальные компоненты электрического и магнитного полей по формулам:

с точностью до величин [3], где , а — радиус кривизны поверхности вдоль координатной линии . Для периодической решетки на обобщенной цилиндрической поверхности это решение приведено в [2]. В случае же произвольной поверхности больших размеров и произвольного расположения излучателей решение получается достаточно громоздким и сложным в вычислительном отношении, т.к. требует выполнения численного дифференцирования и двойного численного интегрирования по контурам в комплексной плоскости. Оно может быть получено из выражений, приведенных в работе [3] (формулы (2.56)…(2.58 ) и (2.71)…(2.74)). Ограничимся случаем двумерно−периодической решетки, подчинив ее периоды условию

(5)

где — период АР вдоль оси (i = 1,2). Условие (5) характерно для КАР из МДЛИ. Перейдем в формуле (1) к дискретному преобразованию Фурье и будем считать, что при выполнении условий , и (5) в пределах данного выбранного периода:
— радиус кривизны не зависит от и
— компоненты метрического тензора не зависят от и
— компоненты метрического тензора не зависят от и .

При сделанных ограничениях из (3) получаем, положив , что в пределах одного (любого) периода:

Если, кроме перечисленных, выполняется еще и условие

то во всех выражениях можно положить . Кроме этого электромагнитное поле вблизи решетки при «парциальном» возбуждении (2) можно считать локально периодическим [3], а рассеянное поле в системе координат , , может быть записано для нулевой ячейки в области в виде [3]:

(6)

где , , — коэффициенты, являющиеся медленно−меняющимися функциями координат , . Ковариантные компоненты собственных векторов могут быть получены с использованием формул (2.70), (2.65), (2.56) и (2.58) работы [3] и имеют следующий вид:

— для электрического поля

(7)
— для магнитного поля
(8)

В приведенных выражениях:

причем:

, — функции Эйри в определении и обозначении В. А. Фока, , штрих у функций Эйри обозначает производную по аргументу, , а — элементы второй квадратичной формы поверхности . Нижний индекс у и соответствует координате . Гармоники (7) и (8) аналогичны гармоникам Флоке для плоского случая [9] и равномерно переходят в них при .


1/ 2все страницы

Использованная литература

1. Чулков В.И. Использование ленточных излучателей в антенных решетках.— Радиотехника и электроника, 1992, т.37, №5, с.834...840.
2. Чулков В.И. Математическое моделирование антенной решетки из микрополосковых излучателей над импедансной поверхностью обобщенного цилиндра.— Депонир. рукопись, НИИЭИР, №3-8904, 1991.
3. Воскресенский Д.И., Пономарев Л.И., Филиппов B.C. Выпуклые сканирующие антенны.— М.: Сов. радио, 1978.— 301 с.
4. Марков Г.Т., Чаплин А.Ф. Возбуждение электромагнитных волн.— М.: Радио и связь, 1983.— 295с.
5. Векуа И.Н. Основы тензорного анализа и теории ковариантов.— М.: Наука, 1978.— 296 с.
6. Рамзей В. Частотнонезависимые антенны// Пер. с англ. под ред. А.Ф.Чаплина.— М.: Мир, 1968.—- 175с.
7. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров //Пер. с англ, под ред. И.Г.Арамановича.— М.: Наука, 1968.— 720с.
8. Фок В.Д. Проблемы дифракции и распространения электромагнитных волн.— М.: Сов. радио, 1970.— 517с.
9. Амитей Н., Галиндо В., By Ч. Теория и анализ фазированных антенных решеток.— М.:Мир. 1974.— 345с.
10. Инденбом М.В., Филиппов В.С. Дифракция произвольной электромагнитной волны на выпуклой гладкой идеально проводящей поверхности большого электрического размера.— Радиотехника и электроника, 1977, т.22, №7, с.1509...1512.

Статьи за 2005 год

Все статьи

GuidesArray Circular 0.1.4

GuidesArray Circular™ осуществляет электродинамическое моделирование плоских фазированных антенных решеток круглых волноводов с помощью метода моментов.


Подписка



Изменение параметров подписки