ГлавнаяКарта сайтаНапишите намПоиск по сайту
EDS-Soft
ElectroDynamic Systems Software ScientificTM
Radiolocation Systems ResearchTM



Antenna Array


Дальняя зона антенны

Зона, расположенная на расстоянии более ста длин волны, на которой работает антенна.

(из «Словаря терминов» нашего сайта)






Виктор Иванович Чулков, ведущий научный сотрудник Калужского НИИ.
Является автором и руководителем проекта “EDS–Soft” (с 2002 года).
Постранично

Теоретическое исследование свойств широкополосной антенной решетки на выпуклой гладкой импедансной поверхности



Опубликовано: 04.03.2005
© В. И. Чулков, 1991. Все права защищены.
© EDS–Soft, 2005. Все права защищены.


При размещении антенных систем на объектах, имеющих искривленную поверхность, возникает необходимость в определении характеристик излучателей конформных антенных решеток (КАР), как наиболее часто используемых составных элементов этих систем. Широкополосность и широкоугольность работы может быть достигнута путем размещения многоэлементной решетки малогабаритных диапазонных ленточных излучателей (МДЛИ) над импедансной структурой (ИС) со специальными свойствами [1], причем использование такой импедансной структуры позволяет повысить сопротивление излучения, что облегчает согласование излучателя с фидерной линией. В связи с известными трудностями, возникающими при экспериментальных исследованиях, актуальным является теоретический анализ свойств КАР МДЛИ над имедансной криволинейной поверхностью (ИКП).

Рассмотрим гладкую выпуклую поверхность без изломов, представляющую собой в общем случае ИС, над которой размещена решетка из МДЛИ. Считаем, что все электродинамические неоднородности (излучатели, плоскопараллельные слои магнитодиэлектриков и т.д.) находятся между поверхностями и , где поверхность расположена на некотором расстоянии над , а все вводимые ниже координатные системы имеют общее начало, лежащее на поверхности . Пусть на АР вдоль отрицательного направления оси декартовой системы координат под углами , падает монохроматическая первичная плоская электромагнитная волна. В результате дифракции этой волны на поверхности КАР наводятся электрические и магнитные токи, являющиеся источниками вторичной электромагнитной волны (рассеянного поля , ). В работе [2] методом Фока−Филиппова [3] построено асимптотическое решение задачи для двумерно-периодической КАР из МДЛИ над медленно-меняющейся цилиндрической ИКП произвольной формы больших электрических размеров. В настоящей работе полученные в [3] результаты обобщаются на выпуклые поверхности двойной кривизны. Сюда мы будем относить как замкнутые поверхности (действительный эллипсоид), так и незамкнутые неограниченные (эллиптический параболоид).

На поверхности полное электромагнитное поле можно записать в виде непрерывного разложения по плоским волнам [4]:

(1)

где , , — ковариантный базис некоторой ортогональной криволинейной системы координат , , , метрический тензор которой:

Векторы
(2)

будем называть «парциальными» векторными гармониками в системе координат на поверхности . Для определения их конкретного вида введем на поверхности полугеодезическую (полярную [5]) систему координат , таким образом, чтобы выполнялись дифференциальные соотношения:

(3)

Здесь — некоторая произвольная функция, не обращающаяся нигде в ноль и обеспечивающая выполнение условий интегрируемости, . Касательные к осям ковариантные векторы удовлетворяют соотношению [10]:

(4)

где — поверхностный градиент [6], — контравариантный базис системы координат , , , а является эйконалом «парциальной» гармоники падающей волны на поверхности . В выражении (4) , k=1,2 — компоненты ковариантного метрического тензора (=1, =0, ) [7]:

Обозначим через , радиусы кривизны поверхности вдоль координатных линий и (=0). Будем считать, что физические компоненты электромагнитных полей (падающего и рассеянного) удовлетворяют условию малости поперечной и пренебрежимой малости продольной диффузий [8]. Тогда уравнения Максвелла могут быть асимптотически (при , m=1,2) сведены к системе связанных параболических уравнений Леонтовича−Фока относительно ковариантных компонент электрического поля и в координатах , , [3]. Решение последней в однородной области пространства вблизи решетки (при ) позволяет найти все остальные компоненты электрического и магнитного полей по формулам:

с точностью до величин [3], где , а — радиус кривизны поверхности вдоль координатной линии . Для периодической решетки на обобщенной цилиндрической поверхности это решение приведено в [2]. В случае же произвольной поверхности больших размеров и произвольного расположения излучателей решение получается достаточно громоздким и сложным в вычислительном отношении, т.к. требует выполнения численного дифференцирования и двойного численного интегрирования по контурам в комплексной плоскости. Оно может быть получено из выражений, приведенных в работе [3] (формулы (2.56)…(2.58 ) и (2.71)…(2.74)). Ограничимся случаем двумерно−периодической решетки, подчинив ее периоды условию

(5)

где — период АР вдоль оси (i = 1,2). Условие (5) характерно для КАР из МДЛИ. Перейдем в формуле (1) к дискретному преобразованию Фурье и будем считать, что при выполнении условий , и (5) в пределах данного выбранного периода:
— радиус кривизны не зависит от и
— компоненты метрического тензора не зависят от и
— компоненты метрического тензора не зависят от и .

При сделанных ограничениях из (3) получаем, положив , что в пределах одного (любого) периода:

Если, кроме перечисленных, выполняется еще и условие

то во всех выражениях можно положить . Кроме этого электромагнитное поле вблизи решетки при «парциальном» возбуждении (2) можно считать локально периодическим [3], а рассеянное поле в системе координат , , может быть записано для нулевой ячейки в области в виде [3]:

(6)

где , , — коэффициенты, являющиеся медленно−меняющимися функциями координат , . Ковариантные компоненты собственных векторов могут быть получены с использованием формул (2.70), (2.65), (2.56) и (2.58) работы [3] и имеют следующий вид:

— для электрического поля

(7)
— для магнитного поля
(8)

В приведенных выражениях:

причем:

, — функции Эйри в определении и обозначении В. А. Фока, , штрих у функций Эйри обозначает производную по аргументу, , а — элементы второй квадратичной формы поверхности . Нижний индекс у и соответствует координате . Гармоники (7) и (8) аналогичны гармоникам Флоке для плоского случая [9] и равномерно переходят в них при .

В п.4.4 работы [3] приведены асимптотические формулы для «парциальных» гармоник применительно к цилиндрическим периодическим структурам. Выражения (7) и (8) данной работы являются более общими, т.к. сориентированы на периодические структуры, связанные с двумерно−выпуклыми поверхностями.

Выражая далее с помощью, например, леммы Лоренца неизвестные коэффициенты в виде квадратур от тока на излучателе в единичной ячейке и используя граничные условия электродинамики на ИС и на поверхности излучателя можно получить систему операторных уравнений, решив которую определим коэффициенты и, следовательно, все характеристики выпуклой решетки. Подробно этот путь изложен в работе [2].

На основании полученных в работе выражений разработаны алгоритм и программы для расчета характеристик МДЛИ в составе КАР.

Влияние формы конформной АР на характеристики азимутально− и аксиально−ориентированных МДЛИ в составе КАР иллюстрируются кривыми, приведенными на рис.1…6. Форму поперечного сечения решетки зададим каноническим уравнением эллипса:

а характеристики будем рассматривать для излучателя, находящегося в периоде с координатой x=y=0, z=b. МДЛИ возбуждаются в середине −генераторами, имеют длину l=0.05 ( — длина волны на нижней частоте ) и расположены на слое магнитодиэлектрика толщиной 0.016 с проницаемостями =2, =10. Ширина излучателя — 0.015, =0.224, геометрия решетки — квадратная сетка с периодом 0.05.

На рис.1 показаны диаграммы направленности (ДН) излучателя эллиптической решетки, у которой a=5, в зависимости от b, а на рис.2 — в зависимости от a при b=5. Результаты расчетов соответствуют физическому смыслу: при росте радиуса эквивалентного кругового цилиндра, касательного к точке расположения исследуемого излучателя, осцилляции ДН при уменьшаются. Это же относится и к уровню излучения в «теневой» области ().

На рис.3 и 4 даны модули коэффициентов отражения (КО) азимутальных ЛИ эллиптической решетки в полосе частот. Параметры решетки: a=5, b=20 (рис.3) и a=20, b=5 (рис.4). Остальные размеры — без изменений.

Поведение модулей КО аксиальных ЛИ, размещаемых на магнитодиэлектрическом слое эллиптической решетки с теми же параметрами, что и в предыдущем случае, в полосе частот представлено на рис.5 и 6.

Рис.1 Диаграмма направленности азимутального широкополосного излучателя на эллиптическом цилиндре, у которого a=5 (1 − b=10; 2 − b=20; 3 − плоская решетка)

Рис.2 Диаграмма направленности азимутального широкополосного излучателя на эллиптическом цилиндре, у которого b=5 (1 − a=10; 2 − a=20; 3 − плоская решетка)

Рис.3 Поведение модуля коэффициента отражения азимутального широкополосного излучателя на эллиптическом цилиндре (a=5, b=20) в полосе частот (1 − f=; 2 − f=1.5; 3 − f=2; 4 − излучатель в плоской решетке при f=)

Рис.4 Поведение модуля коэффициента отражения азимутального широкополосного излучателя на эллиптическом цилиндре (a=20, b=5) в полосе частот (1 − f=; 2 − f=1.5; 3 − f=2; 4 − излучатель в плоской решетке при f=)

Рис.5 Поведение модуля коэффициента отражения аксиального широкополосного излучателя на эллиптическом цилиндре (a=5, b=20) в полосе частот (1 − f=; 2 − f=1.5; 3 − f=2; 4 − излучатель в плоской решетке при f=)

Рис.6 Поведение модуля коэффициента отражения аксиального широкополосного излучателя на эллиптическом цилиндре (a=20, b=5) в полосе частот (1 − f=; 2 − f=1.5; 3 − f=2; 4 − излучатель в плоской решетке при f=)

Выводы.

— построены математические модели МДЛИ с учетом взаимодействия с соседними излучателями в составе КАР на выпуклой поверхности двойной кривизны при условии, что решетка двумерно периодическая, бесконечная вдоль образующей и имеет большой, медленно−меняющийся радиус кривизны. При этом КАР может иметь многослойное диэлектрическое покрытие, а экран — потери;
— принципиальным отличием конформных и плоских решеток является поведение коэффициента отражения для области углов, близких к ±90°. В то время, как у плоской решетки |Г|=1, у конформной |Г|<0.75 при 90° в трехкратной полосе частот. Этот факт следует учитывать при рассмотрении вопросов, связанных, например, с развязкой КАР;
— при проектировании широкополосных КАР из МДЛИ следует иметь в виду, что искривление апертуры АР до радиусов кривизны не приводит к существенному изменению внутренних и внешних характеристик излучателей такой системы, по сравнению со случаем плоского раскрыва, до углов . В этом секторе может быть обеспечено хорошее согласование () в двухкратной полосе частот для главных плоскостей сканирования.


Постранично

Использованная литература

1. Чулков В.И. Использование ленточных излучателей в антенных решетках.— Радиотехника и электроника, 1992, т.37, №5, с.834...840.
2. Чулков В.И. Математическое моделирование антенной решетки из микрополосковых излучателей над импедансной поверхностью обобщенного цилиндра.— Депонир. рукопись, НИИЭИР, №3-8904, 1991.
3. Воскресенский Д.И., Пономарев Л.И., Филиппов B.C. Выпуклые сканирующие антенны.— М.: Сов. радио, 1978.— 301 с.
4. Марков Г.Т., Чаплин А.Ф. Возбуждение электромагнитных волн.— М.: Радио и связь, 1983.— 295с.
5. Векуа И.Н. Основы тензорного анализа и теории ковариантов.— М.: Наука, 1978.— 296 с.
6. Рамзей В. Частотнонезависимые антенны// Пер. с англ. под ред. А.Ф.Чаплина.— М.: Мир, 1968.—- 175с.
7. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров //Пер. с англ, под ред. И.Г.Арамановича.— М.: Наука, 1968.— 720с.
8. Фок В.Д. Проблемы дифракции и распространения электромагнитных волн.— М.: Сов. радио, 1970.— 517с.
9. Амитей Н., Галиндо В., By Ч. Теория и анализ фазированных антенных решеток.— М.:Мир. 1974.— 345с.
10. Инденбом М.В., Филиппов В.С. Дифракция произвольной электромагнитной волны на выпуклой гладкой идеально проводящей поверхности большого электрического размера.— Радиотехника и электроника, 1977, т.22, №7, с.1509...1512.

Статьи за 2005 год

Все статьи

GuidesArray Coaxial 0.1.2

GuidesArray Coaxial™ используется инженерами для проектирования и исследования характеристик плоских периодических фазированных антенных решеток коаксиальных волноводов.


Подписка



Изменение параметров подписки


 




 
 
EDS-Soft

© 2002-2025 | EDS-Soft
Контакты | Правовая информация | Поиск | Карта сайта

© дизайн сайта | Андрей Азаров