Матричный оператор в уравнении (3) существует только в том случае, когда для всех дифференциальных сдвигов фаз из интервала . Поэтому при (режим холостого хода в виртуальных фидерах) в случае АР с диэлектрическими покрытиями оператор существует только при наличии потерь в слоях.
Для нормы оператора в дискретном пространстве с помощью неравенства Коши–Буняковского [5] можно получить оценку:
где — элементы квадратной матрицы .
В том случае, когда q < 1 (оператор K является оператором сжатия) для решения уравнения (3) можно использовать итерационную процедуру. При этом для скорости сходимости справедлива оценка [6]:
где — вектор амплитуд на k-том шаге итерации. В качестве нулевого приближения можно взять решение для бесконечной решетки.
Для АР с малым периодом Т (, — длина волны) скорость сходимости становится неудовлетворительной. В этом случае необходимо переформулировать задачу и записать уравнение не относительно амплитуд волн в фидерах, а относительно амплитуд суммарной краевой волны [4]. Если применить метод Положего [7], то вместо (3) получаем:
где — матрица искомых амплитуд краевой волны,
— второе итерированное матричное ядро (), — символ Кронекера.
После нахождения искомые амплитуды определяются из равенства , а диаграмма направленности (ДН) конечной решетки — из формулы:
где — вектор–строка {}, причем — ДН s-того элемента нулевого излучателя в бесконечной решетке, полученная при условии, что все остальные элементы во всех излучателях нагружены на согласованные нагрузки.
Обобщение полученных результатов на двумерный случай не представляет особых трудностей.
Рис.2 ДН ЛИ конечной решетки в бесконечном экране в H–плоскости в зависимости от его положения вдоль оси OX (1 — = = 0; 2 — = 4, = 0; 3 — = 12, = 0).
Рис.3 ДН ЛИ конечной решетки в бесконечном экране в H–плоскости в зависимости от его положения вдоль оси OY (1 — = 0, = 4; 2 — = 0, = 12; 3 — излучатель в бесконечной решетке).
Рис.4 ДН ЛИ конечной решетки в бесконечном экране в E–плоскости в зависимости от его положения вдоль оси OX (1 — = = 0, 2 — = 4, = 0, 3 — = 12, = 0).
Рис.5 ДН ЛИ конечной решетки в бесконечном экране в E–плоскости в зависимости от его положения вдоль оси OY (1 — = 0, = 4; 2 — = 0, = 12; 3 — излучатель в бесконечной решетке).