Будем считать также, что подрешетки находятся в составе бесконечной плоской АР и все фидерные линии имеют одинаковые волновые сопротивления. При отсутствии потерь в ДОУ они могут быть описаны унитарными матрицами рассеяния с нулевыми членами на главной диагонали. Пусть ДОУ создают на своих выходах АФР, которые в общем случае могут быть описаны комплекснозначными функциями , i=1,2. Индексы i=1,2 соответствуют ДОУ1 и ДОУ2.
Для активной подрешетки при единичной амплитуде волны основного типа на входе, на выходах ДОУ1 будем иметь следующие амплитуды волн того же типа:
(2) |
При этом амплитуды волн в излучателях пассивной подрешетки будут равны:
(3) |
где Cpt коэффициент взаимной связи между излучателями бесконечной АР, а амплитуда волны на входе ДОУ2
(4) |
Тогда выражение (1) с учетом (2), (3), (4) можно записать в виде:
где член P1 связан со взаимодействием излучателей бесконечной АР, а член P2 определяется только амплитудным распределением на выходах ДОУ и не зависит от фазового распределения, типа излучателей и их местоположения в решетке.
Перепишем выражение для P1 с учетом связи коэффициентов Cst и коэффициента отражения , определяемого при равноамплитудном возбуждении бесконечной АР с линейным фазовым набегом:
(5) |
где * знак комплексного сопряжения,
(6) |
, дифференциальные фазовые сдвиги вдоль осей OX и OY. Функции f1 и f2 представляют собой множители подрешеток и для физически реализуемых АФР принимают по модулю только конечные значения.
На основании анализа выражения (5) можно сформулировать следующие принципы построения АР и ДОУ для широкополосного увеличения развязки, связанной со взаимодействием излучателей (при условии, что рабочие области подрешеток находятся в области видимых углов):
в области видимых углов и в заданной полосе частот коэффициент отражения Г излучателя бесконечной решетки должен принимать по модулю наименьшие значения (в пределе − нулевые для всех ):
ДОУ1 и ДОУ2 должны создавать на своих выходах такие АФР, при которых "основной луч" функций f1, f2 был бы максимально узким, а в области невидимых углов (где при отсутствии дифракционных максимумов высших порядков всегда |Г| = 1) "боковые лепестки" имели бы по модулю наименьшие значения (в пределе нулевые для всех ):
при